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AN EXTENSION OF GAUSS’S PRINCIPLE OF LEAST
CONSTRAINT
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Gauss’s principle of least constraint is reformulated to cover cases in which the constraint forces may do positive or
negative work on a system in a virtual displacement. This is needed to deal conveniently with cases in which, for
example, friction is significant.
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1. INTRODUCTION

Lagrange and Gauss were among the first system scientists. They considered mechanical
systems as being characterized by potential energy, kinetic energy and the constraint
function, all of which refer to the system as a whole. Lagrange also emphasized the use of
generalized coordinates to describe the current configuration. He focused attention on the
need to consider constraints on the system, and introduced what are today called Lagrange
multipliers. Constraints are what make a collection of point masses and rigid bodies into a
system.

Lagrange proposed a fundamental principle for dealing with the constraints, the principle
of virtual work: the constraint forces do no work on the system in a virtual displacement.
This has worked well because practical mechanical systems, through design and the use of
lubricants, minimize the effects of constraint forces that do work on a system. Using this
principle, Gauss was able, in 1829, to establish his principle of least constraint, which
provided an alternative variational principle for the motion of mechanical systems.

The aim of this paper is to produce an extension of Gauss’s principle which is applicable
in situations where constraint forces such as friction do work on the system in virtual
displacements.

A key ingredient in the analysis is the employment of pseudoinverses of matrices, a tool
that was not available to those early investigators. In Section 2, we sketch Lagrange’s and
Gauss’s approach to general constrained motion of mechanical systems and state the result
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that they lead to for the actual acceleration vector (Eq. (8)). Section 3 goes on to state an
extension of the principle of virtual work to cover cases in which there are constraint forces
that do work on the system. Then in Section 4 the extended principle of virtual work is used
to derive the new equation of motion (Eq. (33)). This makes it possible to provide an
extension of Gauss’s principle in Section 5, one which covers the case in which constraint
forces that do work on the system in a virtual displacement are significant. The validity of the
new principle is verified by showing that it leads to the same equation of motion, Eq. (44), as
was established earlier in Eq. (33).

Equation (44) is the most general possible equation of constrained motion. In modeling a
mechanical system the modeler may neglect constraint forces that do work on the system by
putting ¢ = 0. Or they may be included by having ¢ # 0 and specified by Eq. (12). There are
no remaining possibilities, as the derivation reveals.

2. CLASSICAL MODELS OF CONSTRAINED MOTION

Consider a discrete mechanical system whose generalized state vector is g, generalized
velocity vector is ¢, and generalized acceleration is . These vectors are of dimension n. Then
Lagrange’s equations of motion take the form

Mg=Q, (1)

where M is an n by n positive definite symmetric matrix, and Q is an n-dimensional force
vector. Suppose next that this system is subjected to m consistent equality constraints of the
form

fi(t7q7Q):0’ i:1727'--am' (2)
Upon differentiation with respect to ¢ these equations assume the form
Ag=b, 3

where A is an m by n rectangular matrix, and b is an m-dimensional vector. Both may depend
upon ¢, g, g. To maintain these constraints a constraint force Q © is required so that Eq. (1)
becomes

Mg =Q+ 0", “4)

where the constraint force Q € is n-dimensional.

For the determination of the unknown vectors § and Q © at each moment, 2n independent
relations are required. Equation (4) provides n, and if the rank of A is r, Eq. (3) provides r
more. A customary way of providing the additional ones is through the principle of virtual
work. If we let v be an n-dimensional vector such that

Av =0, (%)

where v is a so-called generalized virtual displacement, then the principle is that the
constraint force Q © does no work in such a virtual displacement. This provides the additional
n—r conditions needed for the determination of both § and Q , which we shall actually see
below.

In equation form this is: if v is a solution of Av = 0, then

270 =0. (6)
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Alternatively, Gauss, in 1829, suggested determining g as the vector which minimizes the
constraint function G,

G=@G—a'M@G - a), (7

subject to the constraint AG = b, where a is the acceleration that the system would have if
there were no constraints. Both of these characterizations lead to the explicit formula for g as

+
q:a+M“/2(AM‘1/2) (b — Aa), (8)

where (AM ~'/2)* is the usual pseudoinverse of the matrix AM ~'/2. This formula (Udwadia
and Kalaba, 1996) shows that the actual acceleration is made up of the free motion
acceleration plus a perturbation term.

This term is proportional to the vector b — Aa, which indicates the extent to which the free
motion acceleration a does not satisfy the constraint equation Ag = b. The proportionality
matrix is M ~'/2(AM ~'/2)T. The formula in Eq. (8) is useful theoretically and especially
computationally, for computing environments such as MATLAB contain commands for
obtaining pseudoinverses.

3. INCORPORATION OF CONSTRAINT FORCES THAT DO WORK

But suppose that still other constraint forces are at work, forces that may do positive or
negative work on the system in a virtual displacement. Their existence is beyond dispute.
How may the standard framework be modified to account for them?

Let us simply replace Eq. (6) with the relation

2T0°¢ = v7¢, 9)

where ¢ is an n-dimensional vector which may depend upon ¢, ¢, and g. The vector ¢, a
force, could, for example, represent the force of friction. The right side of the last
equation, which may be positive, zero, or negative, can be chosen to account for the
forces that do do work on the system in a virtual displacement. Now let us see what
effect this has on both Gauss’s principle and the explicit formula (8) for the actual
generalized acceleration §.

4. DERIVATION OF THE NEW EQUATION OF MOTION

The model for determining § and Q © is now

Mg =0+ 0°, (10)
Ag=Db, (11)
and, for all ¥ such that Av = 0,
27Q° =olc. (12)
We introduce the notation
B=AM"'2, (13)

F=M"?g, (14)
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so that Eq. (11) becomes

the most general solution of which is
#=BYb+U - BTBw.
In the last equation w is an arbitrary n-vector. Equations (10) and (12) yield
v'(Mg - Q) =v'c,
for all v for which Av = 0. This may be rewritten as
v'(Mj—Q—0)=0,
or
0" (M'?i = Q~¢)=0.

Making use of Eq. (16) it is seen that
T <M1/2{3+b +U—-B*BW} -0~ c) —0.

We may rewrite the equation Av = 0 as

(AM_'/2> (M1/2v> =,

and put
u=Mm '/211,
so that
T = Tl
and

Equation (20) becomes
uT{B+b +( - B Bw - M0~ M_'/zc} =0.
Since the vector u is in the null space of the matrix B, Bu = 0, it is known that
u™BT =0,

which means that

uT{w - Mﬁl/zQ — Mﬁl/zc} =0.

(15)

(16)

A7)

(18)

(19)

(20)

2D

(22)

(23)

(24)

(25)

(26)

27
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Since the term in brackets is orthogonal to every vector u for which Bu = 0, it must belong
to the range space of the matrix B T so that

w—M"?Q—-M""?c=B" (28)

where z is an m-dimensional vector. Equation (16) becomes

F=B*b+ (1—B+B) [M“/2Q+M“/2c+BTz]. (29)
But it is known that
B*BBT = BT, (30)
so that the last equation becomes
F=B*b+ (1 B*B)[M71P0+ M|, (31)
It follows that
MY =B b+ (1—B+B) [M"/2Q+M*1/2c], (32)
which implies that
g=a+M V’BT(b— Aa)+ M2 — BTBYM ¢, (33)

where @ = M ~'Q. This is the desired equation of motion. It is the most general one possible,
as the derivation shows. The first two terms on the right side have already been seen in Eq. (8).
The new term, due to the constraint forces that do work on the system in a virtual
displacement, is the third one. Thus only a small change is needed to obtain the most general
equation of constrained motion.

Equation (31) is especially informative. The first term on the right side, Bb, is a vector in
the range space of the matrix B T and represents the contribution of the constraint forces that
do no work on the system. The second term on the right is a vector that lies in the null space
of the matrix B. It depends linearly on the generalized impressed force vector O and the
vector ¢, which characterizes the constraint forces that do work on the system. The first and
second terms on the right side of Eq. (31) are, of course, orthogonal to each other, and one
cannot compensate for the other.

Equations (31) and (33) are useful in dealing with Coulomb sliding friction. If there is a
single particle, the vector ¢, assuming Cartesian coordinates, lies in the direction of
~4/(q%q) /2 and has a magnitude that depends upon the vector B¥(b — BM~'/2Q) =
Bt (b — Aa) and the coefficient of friction.

5. AN EXTENDED PRINCIPLE OF GAUSS
An extended principle of Gauss is
G—a—-M"')"™™M@G—a—M'c)=min (34)

subject to the restriction

AG =b. (35)
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Let us show that this also leads to Eq. (33). Introduce
y=M"[g—a-M"c], (36)

so that the extended Gauss principle becomes

y'y = min 37
subject to
A[M_l/zy—ka—i-M_‘c} —5 (38)
or
AM ™2y =b— Aa — AM "'c. (39)

But the shortest length solution of the consistent linear algebraic equation system in
Eq. (39) is

y= (AM*‘/2)+(b—Aa—AM“c). (40)
It follows from Eq. (36) that
g=M""yt+a+M e (41)
Thus
sz*‘/z{(AM‘l/zﬁ(b—Aa—AM“c)}+a+M'1c. (42)
But this can be written as

Gg=a+M PAM Vb — Aa) - MTVPAM TV AM T e+ M T e, (43)
g=a+M 2AM V) b - Aa) +M“/2{1 - (AM“/2)+(AM“/2)}M*1/2c, (44)

which is again the equation of motion of the system subject to constraint forces that do no
work on the system and to constraint forces that do work on the system in a virtual
displacement.

6. DISCUSSION

In this paper, we have presented an extension of Gauss’s principle of least constraint and have
exhibited the equation of motion to which it leads, Eq. (44). In modeling a mechanical system
of mass points and rigid bodies the modeler may put ¢ = 0, the classical choice, or choose
¢ # 0 and specified by the work it does in a virtual displacement.
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